|
从惊讶到思考——数学悖论奇景
《科学美国人》杂志社 马丁·加德纳
译者说明
本书译自《科学美国人》杂志社发行的一套数学悖论幻灯片“Paradox Box”(悖论箱)的说明。“Paradox Box”是第一次采用幻灯形式来集中演示一些生动有趣而又异乎寻常的悖论,还配有一套录音带作解说,以此来激发人们对数学的兴趣。遗憾的是,我们无力把包括幻灯片、录音带在内的全套材料介绍给国内读者,只能将幻灯片的全部画面复印出来,附以解说,以连环画的形式给出各种悖论小故事,这样虽不如原有材料生动活泼,倒也不失其新颖有趣之处。
为了通俗起见,Paradox一概译为悖论。全书共分六章,每章有十多个小故事,提出不同的悖论。为了帮助读者理解和进一步深入学习,一组画面之后备有评注,详细说明这组画的内容,另外还提供一些背景材料和有益建议。参考书目统一附于书后。
由于我们的水平不高,因此在本书的翻译工作中一定存在不少问题。承蒙研究生院的颜基义同志悉心校订,科学出版社的白树枫同志帮助编审,才使本书得以顺利完成。在此谨对他们表示衷心的感谢。
前言
“Paradox Box”是一套有六组片子的幻灯片,它包括逻辑学、概率论、数论、几何学、统计学和时间等六个方面的数学悖论,另外还附有录音带作解说。本书是这套材料的说明。
“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。正因为如此,悖论就成了一种十分有价值的教学手段。
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
趣味数学具有重大教育学价值.这一点只是在最近才为一大批教师所认识。很多现象说明,这一趋势正在发展。雅可比的教本:《数学—人类的魄力》获得了极大成功,其部分原因无疑是他巧妙地把趣味性材料揉进了传统的数学问题中。现在在教师会议和期刊里,趣味数学的文章也越来越多。美国教师委员会出版的威廉·沙夫编的《趣味数学书目》发行量是很大的。
就我们所知,悖论箱是第—次用视听方法向中学生和大学低年级学生介绍趣味数学的重要尝试。这六个部分的幻灯故事内容都很新颖,大部分是过去没有见过的。有些材料即便不是新的,它也是用不同形式和色调来表现的。
这套书有五个主要目的:
1.激发学生对数学的兴趣;
2.向读者介绍重要的数学思路;
3.发起丰富多彩的数学活动;
4.使人洞悉解题过程;
5.提高学生对现代数学所具有的美妙、多样、甚至幽默性质的鉴赏力。 |
|